points.uniforms
uniforms: UniformsUtils.merge( [
/* UniformsLib.points
*/
{
diffuse: { value: new Color( 0xeeeeee ) },
opacity: { value: 1.0 },
size: { value: 1.0 },
scale: { value: 1.0 },
map: { value: null },
uvTransform: { value: new Matrix3() }
}
/* UniformsLib.fog
*/
{
fogDensity: { value: 0.00025 },
fogNear: { value: 1 },
fogFar: { value: 2000 },
fogColor: { value: new Color( 0xffffff ) }
}
] ),
points_vert.glsl
uniform float size;
uniform float scale;
/* common.glsl */
#define PI 3.14159265359
#define PI2 6.28318530718
#define PI_HALF 1.5707963267949
#define RECIPROCAL_PI 0.31830988618
#define RECIPROCAL_PI2 0.15915494
#define LOG2 1.442695
#define EPSILON 1e-6
#define saturate(a) clamp( a, 0.0, 1.0 )
#define whiteCompliment(a) ( 1.0 - saturate( a ) )
float pow2( const in float x ) { return x*x; }
float pow3( const in float x ) { return x*x*x; }
float pow4( const in float x ) { float x2 = x*x; return x2*x2; }
float average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }
// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range.
// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/
highp float rand( const in vec2 uv ) {
const highp float a = 12.9898, b = 78.233, c = 43758.5453;
highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );
return fract(sin(sn) * c);
}
struct IncidentLight {
vec3 color;
vec3 direction;
bool visible;
};
struct ReflectedLight {
vec3 directDiffuse;
vec3 directSpecular;
vec3 indirectDiffuse;
vec3 indirectSpecular;
};
struct GeometricContext {
vec3 position;
vec3 normal;
vec3 viewDir;
};
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
// http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transformations
vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );
}
vec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {
float distance = dot( planeNormal, point - pointOnPlane );
return - distance * planeNormal + point;
}
float sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {
return sign( dot( point - pointOnPlane, planeNormal ) );
}
vec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {
return lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;
}
mat3 transposeMat3( const in mat3 m ) {
mat3 tmp;
tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );
tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );
tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );
return tmp;
}
// https://en.wikipedia.org/wiki/Relative_luminance
float linearToRelativeLuminance( const in vec3 color ) {
vec3 weights = vec3( 0.2126, 0.7152, 0.0722 );
return dot( weights, color.rgb );
}
/* color_pars_vertex.glsl */
#ifdef USE_COLOR
varying vec3 vColor;
#endif
/* fog_pars_vertex.glsl */
#ifdef USE_FOG
varying float fogDepth;
#endif
/* morphtarget_pars_vertex.glsl */
#ifdef USE_MORPHTARGETS
#ifndef USE_MORPHNORMALS
uniform float morphTargetInfluences[ 8 ];
#else
uniform float morphTargetInfluences[ 4 ];
#endif
#endif
/* logdepthbuf_pars_vertex.glsl */
#ifdef USE_LOGDEPTHBUF
#ifdef USE_LOGDEPTHBUF_EXT
varying float vFragDepth;
#endif
uniform float logDepthBufFC;
#endif
/* clipping_planes_pars_vertex.glsl */
#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )
varying vec3 vViewPosition;
#endif
void main() {
/* color_vertex.glsl */
#ifdef USE_COLOR
vColor.xyz = color.xyz;
#endif
/* begin_vertex.glsl */
vec3 transformed = vec3( position );
/* morphtarget_vertex.glsl */
#ifdef USE_MORPHTARGETS
transformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];
transformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];
transformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];
transformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];
#ifndef USE_MORPHNORMALS
transformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];
transformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];
transformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];
transformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];
#endif
#endif
/* project_vertex.glsl */
vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );
gl_Position = projectionMatrix * mvPosition;
#ifdef USE_SIZEATTENUATION
gl_PointSize = size * ( scale / - mvPosition.z );
#else
gl_PointSize = size;
#endif
/* logdepthbuf_vertex.glsl */
#ifdef USE_LOGDEPTHBUF
#ifdef USE_LOGDEPTHBUF_EXT
vFragDepth = 1.0 + gl_Position.w;
#else
gl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;
gl_Position.z *= gl_Position.w;
#endif
#endif
/* clipping_planes_vertex.glsl */
#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )
vViewPosition = - mvPosition.xyz;
#endif
/* worldpos_vertex.glsl */
#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )
vec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );
#endif
/* fog_vertex.glsl */
#ifdef USE_FOG
fogDepth = -mvPosition.z;
#endif
}
points_frag.glsl
uniform vec3 diffuse;
uniform float opacity;
/* common.glsl */
#define PI 3.14159265359
#define PI2 6.28318530718
#define PI_HALF 1.5707963267949
#define RECIPROCAL_PI 0.31830988618
#define RECIPROCAL_PI2 0.15915494
#define LOG2 1.442695
#define EPSILON 1e-6
#define saturate(a) clamp( a, 0.0, 1.0 )
#define whiteCompliment(a) ( 1.0 - saturate( a ) )
float pow2( const in float x ) { return x*x; }
float pow3( const in float x ) { return x*x*x; }
float pow4( const in float x ) { float x2 = x*x; return x2*x2; }
float average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }
// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range.
// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/
highp float rand( const in vec2 uv ) {
const highp float a = 12.9898, b = 78.233, c = 43758.5453;
highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );
return fract(sin(sn) * c);
}
struct IncidentLight {
vec3 color;
vec3 direction;
bool visible;
};
struct ReflectedLight {
vec3 directDiffuse;
vec3 directSpecular;
vec3 indirectDiffuse;
vec3 indirectSpecular;
};
struct GeometricContext {
vec3 position;
vec3 normal;
vec3 viewDir;
};
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
// http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transformations
vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );
}
vec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {
float distance = dot( planeNormal, point - pointOnPlane );
return - distance * planeNormal + point;
}
float sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {
return sign( dot( point - pointOnPlane, planeNormal ) );
}
vec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {
return lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;
}
mat3 transposeMat3( const in mat3 m ) {
mat3 tmp;
tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );
tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );
tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );
return tmp;
}
// https://en.wikipedia.org/wiki/Relative_luminance
float linearToRelativeLuminance( const in vec3 color ) {
vec3 weights = vec3( 0.2126, 0.7152, 0.0722 );
return dot( weights, color.rgb );
}
/* packing.glsl */
vec3 packNormalToRGB( const in vec3 normal ) {
return normalize( normal ) * 0.5 + 0.5;
}
vec3 unpackRGBToNormal( const in vec3 rgb ) {
return 2.0 * rgb.xyz - 1.0;
}
const float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)
const float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)
const vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );
const vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );
const float ShiftRight8 = 1. / 256.;
vec4 packDepthToRGBA( const in float v ) {
vec4 r = vec4( fract( v * PackFactors ), v );
r.yzw -= r.xyz * ShiftRight8; // tidy overflow
return r * PackUpscale;
}
float unpackRGBAToDepth( const in vec4 v ) {
return dot( v, UnpackFactors );
}
// NOTE: viewZ/eyeZ is < 0 when in front of the camera per OpenGL conventions
float viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {
return ( viewZ + near ) / ( near - far );
}
float orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {
return linearClipZ * ( near - far ) - near;
}
float viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {
return (( near + viewZ ) * far ) / (( far - near ) * viewZ );
}
float perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {
return ( near * far ) / ( ( far - near ) * invClipZ - far );
}
/* color_pars_fragment.glsl */
#ifdef USE_COLOR
varying vec3 vColor;
#endif
/* map_particle_pars_fragment.glsl */
#ifdef USE_MAP
uniform mat3 uvTransform;
uniform sampler2D map;
#endif
/* fog_pars_fragment.glsl */
#ifdef USE_FOG
uniform vec3 fogColor;
varying float fogDepth;
#ifdef FOG_EXP2
uniform float fogDensity;
#else
uniform float fogNear;
uniform float fogFar;
#endif
#endif
/* logdepthbuf_pars_fragment.glsl */
#ifdef USE_LOGDEPTHBUF
uniform float logDepthBufFC;
#ifdef USE_LOGDEPTHBUF_EXT
varying float vFragDepth;
#endif
#endif
/* clipping_planes_pars_fragment.glsl */
#if NUM_CLIPPING_PLANES > 0
#if ! defined( PHYSICAL ) && ! defined( PHONG )
varying vec3 vViewPosition;
#endif
uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];
#endif
void main() {
/* clipping_planes_fragment.glsl */
#if NUM_CLIPPING_PLANES > 0
vec4 plane;
#pragma unroll_loop
for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
if ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;
}
#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES
bool clipped = true;
#pragma unroll_loop
for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
clipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;
}
if ( clipped ) discard;
#endif
#endif
vec3 outgoingLight = vec3( 0.0 );
vec4 diffuseColor = vec4( diffuse, opacity );
/* logdepthbuf_fragment.glsl */
#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )
gl_FragDepthEXT = log2( vFragDepth ) * logDepthBufFC * 0.5;
#endif
/* map_particle_fragment.glsl */
#ifdef USE_MAP
vec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;
vec4 mapTexel = texture2D( map, uv );
diffuseColor *= mapTexelToLinear( mapTexel );
#endif
/* color_fragment.glsl */
#ifdef USE_COLOR
diffuseColor.rgb *= vColor;
#endif
/* alphatest_fragment.glsl */
#ifdef ALPHATEST
if ( diffuseColor.a < ALPHATEST ) discard;
#endif
outgoingLight = diffuseColor.rgb;
gl_FragColor = vec4( outgoingLight, diffuseColor.a );
/* premultiplied_alpha_fragment.glsl */
#ifdef PREMULTIPLIED_ALPHA
// Get get normal blending with premultipled, use with CustomBlending, OneFactor, OneMinusSrcAlphaFactor, AddEquation.
gl_FragColor.rgb *= gl_FragColor.a;
#endif
/* tonemapping_fragment.glsl */
#if defined( TONE_MAPPING )
gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );
#endif
/* encodings_fragment.glsl */
gl_FragColor = linearToOutputTexel( gl_FragColor );
/* fog_fragment.glsl */
#ifdef USE_FOG
#ifdef FOG_EXP2
float fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );
#else
float fogFactor = smoothstep( fogNear, fogFar, fogDepth );
#endif
gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );
#endif
}
Back to Index Source